Antinociception following application of DAMGO to the basolateral amygdala results from a direct interaction of DAMGO with Mu opioid receptors in the amygdala.

نویسندگان

  • Maeng-Sik Shin
  • Fred J Helmstetter
چکیده

Previous studies from our laboratory have shown that application of the mu opioid agonist DAMGO into the basolateral region of the amygdala (BLA) suppresses the radiant heat tail flick (TF) reflex in anesthetized rats. This antinociceptive effect can be blocked by lesions of brainstem regions such as the periaqueductal gray (PAG) or the rostral ventromedial medulla (RVM) or by functional inactivation of neurons in these regions, suggesting the activation of brainstem-descending antinociceptive systems from the amygdala. However, little is known about the direct interaction of DAMGO with mu receptors in the amygdala. In the present series of experiments, the BLA was pretreated with opioid receptor antagonists and a G protein inhibitor prior to TF testing with application of DAMGO into the same site. Rats pretreated with the non-selective opioid antagonist naltrexone (1.25-3.75 microg/0.25 microl per side) or the G protein inhibitor pertussis toxin (0.25 microg) failed to show inhibition of TF reflexes following infusion of DAMGO (0.168-0.50 microg), indicating that DAMGO works through G-protein-coupled opioid receptors in the BLA. Furthermore, pretreatment with the mu antagonist beta-FNA (1.00-2.00 microg) attenuated antinociception induced by DAMGO injection, suggesting DAMGO's action on mu receptors in the BLA. Accordingly, we confirm a direct interaction of DAMGO with G-protein-coupled mu receptors in the BLA contributing to induction of opioid antinociception in the amygdala.

منابع مشابه

Mu opioid receptor activation inhibits GABAergic inputs to basolateral amygdala neurons through Kv1.1/1.2 channels.

The basolateral amygdala (BLA) is the major amygdaloid nucleus distributed with mu opioid receptors. The afferent input from the BLA to the central nucleus of the amygdala (CeA) is considered important for opioid analgesia. However, little is known about the effect of mu opioids on synaptic transmission in the BLA. In this study, we examined the effect of mu opioid receptor stimulation on the i...

متن کامل

Glutamate Receptors in Nucleus Accumbens Can Modulate Canabinoid-Induced Antinociception in Rat’s Basolateral Amygdala

Introduction: It has been shown that administration of WIN55,212-2, a cannabinoid receptor agonist, into the basolateral amygdala (BLA), dose-dependently increases the thermal latency to withdrawal in the tail-.ick test and decreases pain related behaviors in both phases of the formalin test. Recent human and animal imaging data suggest that the nucleus accumbens (NAc) is an important neural su...

متن کامل

Opioid Receptors of the Central Amygdala and Morphine-Induced Antinociception

The amygdala is a forebrain region, which is known as a modulator of pain sensation. The amygdala, particularly the central nucleus, has high concentrations of enkephalins relative to dynorphins and has high concentrations of opioid receptors. We here studied the role of central nuclei of amygdala in morphine antinociception. Methods: In this study, we used 130 male Wistar rats (200- 250g). Bil...

متن کامل

FINAL ACCEPTED VERSION μ Opioid receptor activation inhibits GABAergic inputs to basolateral amygdala neurons through Kv1.1/1.2 channels

The basolateral amygdala (BLA) is the major amygdaloid nucleus distributed with μ opioid receptors. The afferent input from the BLA to the central nucleus of the amygdala (CeA) is considered important for opioid analgesia. However, little is known about the effect of μ opioids on synaptic transmission in the BLA. In this study, we examined the effect of μ opioid receptor stimulation on the inhi...

متن کامل

TRANSLATIONAL PHYSIOLOGY Opioid Receptor Activation Inhibits GABAergic Inputs to Basolateral Amygdala Neurons Through Kv1.1/1.2 Channels

Finnegan, Thomas F., Shao-Rui Chen, and Hui-Lin Pan. Opioid receptor activation inhibits GABAergic inputs to basolateral amygdala neurons through Kv1.1/1.2 channels. J Neurophysiol 95: 2032–2041, 2006. First published November 23, 2005; doi:10.1152/jn.01004.2005. The basolateral amygdala (BLA) is the major amygdaloid nucleus distributed with opioid receptors. The afferent input from the BLA to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Brain research

دوره 1064 1-2  شماره 

صفحات  -

تاریخ انتشار 2005